A stochastic analysis of transient two-phase flow in heterogeneous porous media

نویسندگان

  • Mingjie Chen
  • Arturo A. Keller
  • Dongxiao Zhang
  • Zhiming Lu
  • George A. Zyvoloski
چکیده

[1] The Karhunen-Loeve moment equation (KLME) approach is implemented to model stochastic transient water-NAPL two-phase flow in heterogeneous subsurface media with random soil properties. To describe the constitutive relationships between water saturation, capillary pressure, and phase relative permeability, the widely used van Genuchten model and Parker and Lenhard models are adopted. The log-transformed intrinsic permeability, soil pore size distribution, and van Genuchten fitting parameter n are treated as normally distributed stochastic variables with a separable exponential covariance model. The perturbation part of these three log-transformed variables is decomposed via Karhunen-Loeve expansion. The dependent variables (phase pressure, phase mobility, and capillary pressure) are expanded by polynomial expansions and the perturbation method. Incorporating these expansions of random soil properties variables and dependent variables into the governing equations yields a series of differential equations in different orders. We construct the moments of the dependent variables from the solutions of these differential equations. We demonstrate the stochastic model with two-dimensional examples of transient two-phase flow. We also conduct Monte Carlo simulations using the finite element heat and mass (FEHM) transfer code, whose results are considered ‘‘true’’ solutions. The match between the results from FEHM and KLME indicates the validity of the proposed KLME application in transient two-phase flow. The computational efficiency of the KLME approach over Monte Carlo methods is at least an order of magnitude for transient two-phase flow problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic analysis of transient saturated flow through heterogeneous fractured porous media: A double-permeability approach

In this paper we use a double-porosity/double-permeability approach to study transient, saturated flow in heterogeneous, fractured porous media. The spatial variabilities in both the fracture and matrix continua motivate us to treat some of the fracture and matrix medium properties as stochastic processes. Hence flow through heterogeneous, fractured porous media is also amenable to stochastic a...

متن کامل

Comparison of Thermal Dispersion Effects for Single and two Phase Analysis of Heat Transfer in Porous Media

The present work involves numerical simulation of a steady, incompressible forcedconvection fluid flow through a matrix of porous media between two parallel plates at constanttemperature. A Darcy model for the momentum equation was employed. The mathematical model forenergy transport was based on single phase equation model which assumes local thermal equilibriumbetween fluid and solid phases. ...

متن کامل

Numerical Simulation and Estimation of the Transvers Macrodispersivity Coefficient of Aqueous Phase (Miscible) Contaminants of Salt Water in a Heterogeneous and Homogeneous Porous Media

Deterioration of groundwater resources in coastal regions due to the progression of saline water in aquifers in these regions is currently one of the important issues in providing water needs in these areas. In coastal regions, saline water enters the aquifer from below in shape of wedge. Due to the difference in the density between fresh and salty water, an interface zone forms between two flu...

متن کامل

Integrated Adaptive Numerical Method for Transient Two-phase Flow in Heterogeneous Porous Media

An interconnected set of algorithms is presented for the simulation of two-phase ow in porous media achieving more than two orders of magnitudes acceleration. The accuracy and e ciency of the approach is demonstrated through 2D and 3D numerical experiments for a range of two-phase porous media problems involving single cracks, heterogeneous permeability, and hydrophobic and hydrophilic media

متن کامل

Multi-level adaptive simulation of transient two-phase flow in heterogeneous porous media

An implicit pressure and explicit saturation (IMPES) finite element method (FEM) incorporating a multi-level shock-type adaptive refinement technique is presented and applied to investigate transient two-phase flow in porous media. Local adaptive mesh refinement is implemented seamlessly with state-of-the-art artificial diffusion stabilization allowing simulations that achieve both high resolut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006